Главная   Добавить в избранное Активность основных карбоксипептидаз при действии нейролептиков | диссертация


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней
 




Активность основных карбоксипептидаз при действии нейролептиков - диссертация


Категория: Диссертации
Рубрика: Биология и естествознание
Размер файла: 689 Kb
Количество загрузок:
143
Количество просмотров:
5489
Описание работы: диссертация на тему Активность основных карбоксипептидаз при действии нейролептиков
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



116

ОГЛАВЛЕНИЕ

  • СПИСОК СОКРАЩЕНИЙ
  • ВВЕДЕНИЕ
  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1.1. Влияние психолептиков на пептидергические системы
      • 1.1.1. Нейропептиды при действии диазепама
      • 1.1.2. Нейропептиды при действии галоперидола
    • 1.2. Основные карбоксипептидазы и их роль в процессинге регуляторных пептидов
      • 1.2.1. Протеолитические ферменты обмена регуляторных пептидов при действии психолептиков
      • 1.2.2. Карбоксипептидаза Н
      • 1.2.3. Карбоксипептидаза М
      • 1.2.4. ФМСФ-ингибируемая карбоксипептидаза
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2.1. Материалы исследования
      • 2.1.1. Схема эксперимента
    • 2.2. Методы исследования
      • 2.2.1. Метод определения активности карбоксипептидазы Н
      • 2.2.2. Метод определения активности карбоксипептидазы М
      • 2.2.3. Метод определения активности ФМСФ-ингибируемой карбоксипептидазы
      • 2.2.4. Статистическая обработка результатов исследования
  • 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
    • 3.1. Активность карбоксипептидазы Н в тканях крыс в норме и при действии психолептиков
      • 3.1.1. Распределение активности карбоксипептидазы Н в тканях интактных крыс
      • 3.1.2. Влияние физиологического раствора на активность карбоксипептидазы Н в тканях крыс
        • 3.1.2.1. Влияние однократного введения физиологического раствора на активность карбоксипептидазы Н в тканях крыс
        • 3.1.2.2. Влияние хронического введения физиологического раствора на активность карбоксипептидазы Н в тканях крыс
      • 3.1.3. Активность карбоксипептидазы Н в тканях крыс при введении диазепама
        • 3.1.3.1. Влияние однократного введения диазепама на активность карбоксипептидазы Н в тканях крыс
        • 3.1.3.2. Влияние хронического введения диазепама на активность карбоксипептидазы Н в тканях крыс
      • 3.1.4. Активность карбоксипептидазы Н в тканях крыс при введении галоперидола
        • 3.1.4.1. Влияние однократного введения галоперидола на активность карбоксипептидазы Н в тканях крыс
        • 3.1.4.2. Влияние хронического введения галоперидола на активность карбоксипептидазы Н в тканях крыс
    • 3.2. Активность ФМСФ-ингибируемой карбоксипептидазы в тканях крыс в норме и при действии психолептиков
      • 3.2.1. Распределение активности ФМСФ-ингибируемой карбоксипептидазы в тканях интактных крыс
      • 3.2.2. Активность ФМСФ-ингибируемой КП в тканях крыс при введении физиологического раствора
        • 3.2.2.1. Влияние однократного введения физраствора на активность ФМСФ-ингибируемой КП в тканях крыс
        • 3.2.2.2. Влияние хронического введения физиологического раствора на активность ФМСФ-ингибируемой КП в тканях крыс
      • 3.2.3. Активность ФМСФ-ингибируемой КП в тканях крыс при введении диазепама
        • 3.2.3.1. Влияние однократного введения диазепама на активность ФМСФ-ингибируемой КП в тканях крыс
        • 3.2.3.2. Влияние хронического введения диазепама на активность ФМСФ-ингибируемой КП в тканях крыс
      • 3.2.4. Активность ФМСФ-ингибируемой КП в тканях крыс при введении галоперидола
        • 3.2.4.1. Влияние однократного введения галоперидола на активность ФМСФ-ингибируемой КП в тканях крыс
        • 3.2.4.2. Влияние хронического введения галоперидола на активность ФМСФ-ингибируемой КП в тканях крыс
    • 3.3. Активность карбоксипептидазы М в тканях крыс в норме и при введении психолептиков
      • 3.3.1. Распределение активности карбоксипептидазы М в тканях интактных животных
      • 3.3.2. Активность карбоксипептидазы М в тканях крыс при введении физиологического раствора
        • 3.3.2.1. Влияние однократного введения физраствора на активность карбоксипептидазы М в тканях крыс
        • 3.3.2.2. Влияние хронического введения физиологического раствора на активность карбоксипептидазы М в тканях крыс
      • 3.3.3. Активность карбоксипептидазы М в тканях крыс при введении диазепама
        • 3.3.3.1. Влияние однократного введения диазепама на активность карбоксипептидазы М в тканях крыс
        • 3.3.3.2. Влияние хронического введения диазепама на активность карбоксипептидазы M в тканях крыс
      • 3.3.4. Активность карбоксипептидазы М в тканях крыс при введении галоперидола
        • 3.3.4.1. Влияние однократного введения галоперидола на активность карбоксипептидазы М в тканях крыс
        • 3.3.4.2. Влияние хронического введения галоперидола на активность карбоксипептидазы М в тканях крыс
    • 3.4. Активность основных карбоксипептидаз in vitro при действии психолептиков
  • ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • ВЫВОДЫ
  • ЛИТЕРАТУРА
  • СПИСОК СОКРАЩЕНИЙ

АКТГ - адренокортикотропный гормон

АПМЯК - аминопропилмеркаптоянтарная кислота

АПФ - ангиотензинпревращающий фермент

БД-рецепторы - бензодиазепиновые рецепторы

ГАМК - г-аминомасляная кислота

ГТ-Рг - гонадотропин-рилизинг гормон

ГПЯК - гуанидинопропилянтарная кислота

ГЭМЯК - гуанидиноэтилмеркаптоянтарная кислота

ДА-рецептор - дофаминовый рецептор

DBI - ингибитор связывания диазепама

ДСИП - дельта-сон индуцирующий пептид

КП - карбоксипептидаза

КПА - карбоксипептидаза А

КПВ - карбоксипептидаза В

КПM - карбоксипептидаза M

КПN - карбоксипептидаза N

КП Н - карбоксипептидаза Н

КРФ - кортикотропин-рилизинг фактор

МСГ - меланоцитстимулирующий гормон

ODN - октадеканейропептид

ПБР - периферический бензодиазепиновый рецептор

ПОМК - проопиомеланокортин

ПХМБ - п-хлормеркурийбензоат

TTN - триаконтатетранейропептид

ФМСФ - фенилметилсульфонилфторид

ФМСФ-КП - фенилметилсульфонилфторид-ингибируемая карбокси-пептидаза

ЭДТА - этилдиаминтетрауксусная кислота

ВВЕДЕНИЕ

Психические заболевания занимают в современной медицине довольно обширную нишу болезней человека. Их можно отнести к группе наиболее трудно излечимых. Учитывая высокий риск возникновения психических расстройств, в том числе из-за роста в современном мире различных стрессовых воздействий, экологических факторов, актуальной является проблема профилактики и лечения патологии нервной системы.

В психофармакологии используют препараты, действующие на медиаторные системы [39, 107, 328]. Общепризнано, что галоперидол является анатгонистом дофаминовых, а диазепам - агонистом бензодиазепиновых рецепторов [39, 169, 310]. Однако многообразие фармакологических эффектов этих препаратов трудно объяснить только с этой позиции. В последнее время обсуждается вопрос об участии пептидергической системы в механизмах действия психолептиков [120, 173, 174]. Установлено при этом, что введение галоперидола и диазепама приводит к нарушению баланса ряда пептидов, участвующих в развитии стресс-реакции (АКТГ, энкефалинов, вещества Р) [95, 263], психических болезней (кортикотропин-рилизинг фактора, нейротензина, вещества Р, холецистокинина) и других регуляторных пептидов [164, 193, 228]. Однако механизм влияния психолептиков на уровень биологически активных пептидов до сих пор остается неизученным.

Содержание регуляторных пептидов в организме зависит от соотношения скоростей их синтеза и распада [184, 196]. Нейропептиды синтезируются в виде высокомолекулярных предшественников, которые активируются при ограниченном расщеплении пептид-гидролазами (процессинге) [106, 166, 184, 196, 309]. В конечной стадии процессинга участвуют основные карбоксипептидазы, катализирующие отщепление остатков аргинина и лизина с С-конца предшественников регуляторных пептидов [9, 26, 147, 311]. Одним из основных ферментов, участвующих в синтезе таких нейропептидов как АКТГ [128, 175], энкефалины [147, 148], вещество P [104], гормон роста [103], пролактин [103] является карбоксипептидаза Н (КФ 3.4.17.10). Известно также, что в обмен энкефалинов и других нейропептидов в организме вовлекается карбоксипептидаза М (КФ 3.4.17.12) [118]. Она участвует в инактивации или модулировании активности пептидных гормонов до или после их взаимодействия с рецепторами [301]. Вместе с тем предполагают, что функции недавно обнаруженной ФМСФ-ингибируемой карбоксипептидазы сходны с таковыми КП Н [9, 26]. Однако биологическая роль этого фермента практически остается неясной.

Таким образом, изучение активности КП Н, ФМСФ-КП и КП М в отделах мозга и органах крыс при введении психолептиков может способствовать уточнению биологической роли этих ферментов, а также выяснению молекулярных механизмов взаимодействия дофамин- и ГАМК-ергических систем с пептидергической.

Целью настоящей работы было выяснение роли основных карбоксипептидаз (карбоксипептидазы Н, фенилметилсульфонилфторид-ингибируемой карбоксипептидазы и карбоксипептидазы М) в механизмах действия психолептиков на пептидергическую систему.

При выполнении работы были поставлены следующие задачи:

1. Исследование острого введения диазепама и галоперидола на активность карбоксипептидазы Н, фенилметилсульфонилфторид-ингибируемой карбоксипептидазы и карбоксипептидазы М в головном мозге, надпочечниках и семенниках крыс через различные промежутки времени.

2. Изучение изменения активности исследуемых карбоксипептидаз в тканях самцов крыс через различные сроки после хронического введения диазепама и галоперидола.

3. Исследование активности карбоксипептидазы Н, ФМСФ-ингибируемой карбоксипептидазы и карбоксипептидазы М in vitro при действии аналогичных доз данных препаратов.

Научная новизна и практическая ценность работы. Впервые изучено влияние галоперидола и диазепама на активность КПН, ФМСФ-КП и КПМ в тканях крыс. Показано, что активность ферментов различным образом изменяется в отделах мозга и органах животных при остром и хроническом введении изучаемых психолептиков. Установлена зависимость изменения активности исследуемых ферментов от времени после введения препаратов.

Полученные результаты представляют интерес для понимания механизмов функционирования пептидергических систем и роли основных карбоксипептидаз в реализации этих механизмов при введении психолептиков. Полученные данные могут быть использованы при разработке фармакологических препаратов для коррекции деятельности пептидергических систем при психических заболеваниях.

Апробация работы. Материалы диссертации доложены: на научной конференции Российской Академии Естествознания «Фундаментальные и прикладные проблемы медицины и биологии» (Тунис, июнь, 2005 г.), на V Сибирском физиологическом съезде (Томск, июнь-июль 2005 г.), на международной конференции «Нейроспецифические метаболиты и энзимологические основы деятельности центральной нервной системы» (Пенза, сентябрь 2006 г.) и на итоговых научных конференциях ПГПУ (2004, 2005 гг.). По теме диссертации опубликовано 6 работ.

Структура и объем диссертации. Диссертация изложена на 156 страницах машинописного текста и состоит из 6 разделов: введения, обзора литературы по теме диссертации (I глава), материалов и методов исследования (II глава), результатов (III глава), обсуждения (IV глава), выводов. Работа иллюстрирована 6 рисунками, 19 таблицами и 1 схемой. Список литературы содержит 336 наименований на русском и иностранных языках.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Влияние психолептиков на пептидергические системы

1.1.1. Нейропептиды при действии диазепама

Диазепам (7-хлор-1,3-дигидро-1-метил-5-фенил-2Н-1,4-бензодиазепин-2-он) является классическим транквилизатором, который проявляет анксиолитический, седативный, снотворный, миорелаксирующий, противосудорожный и другие эффекты [39]. Бензодиазепины были введены в клиническую практику около 40 лет назад и до сих пор находят широкое применение [52]. В 1977 г. было обнаружено, что бензодиазепины взаимодействуют с безодиазепиновыми рецепторами, которые, как оказалось, были неотъемлемой частью ГАМКA-рецептора [163]. Комплекс рецептора был изолирован и секвенирован в 1987 г. [249].

Наибольшая плотность бензодиазепиновых рецепторов обнаружена в коре больших полушарий, затем в гиппокампе, мозжечке, гипоталамусе, стриатуме, среднем мозге [40, 218, 222]. По ряду фармакологических и биохимических свойств бензодиазепиновые рецепторы можно разделить на центральные и периферические: центральные найдены только в головном мозге, а периферические - как в мозге, так и в других органах [40, 152, 276]. Наибольшая плотность периферических бензодиазепиновых рецепторов обнаружена в коре надпочечников [40]. Согласно результатам опытов in vitro периферические бензодиазепиновые рецепторы, в отличие от центральных, не связаны с ГАМК-рецепторами [267].

В головном мозге бензодиазепиновые рецепторы локализованы на постсинаптических мембранах ГАМК-ергических систем и входят в состав ГАМКА-бензодиазепин-ионофорного комплекса, состоящего из трех компонентов: бензодиазепинового рецептора, ГАМК-рецептора и хлорного канала [267, 325]. Работа всего комплекса направлена на открывание хлорных каналов, опосредуемое ГАМК-рецептором. Классические бензодиазепины в клиническом использовании увеличивают эффективность ГАМК, понижая концентрацию, необходимую для открытия канала.

ГАМКА-бензодиазепиновый рецептор состоит из пяти белковых субъединиц, расположенных подобно розетке вокруг центрального канала и пронизывающих мембрану клетки, непроницаемую для Cl--ионов [249]. Анализ литературных данных [74, 121, 249] показывает, что активная форма ГАМКА-бензодиазепинового рецептора представлена двумя б-субъединицами, двумя в-субъединицами и одной г-субъединицей. Полагают, что б-субъединица связывает бензодиазепины, а в-субъединица - ГАМК [121, 249]. г-субъединица, по-видимому, не связывает бензодиазепины и ГАМК, но она может оказывать влияние на способность б- и в-субъединиц к рецепции «своих» лигандов. Таким образом, ГАМК, связываясь с в-субъединицей, вызывает конформационные изменения белков ионофорного канала, приводящие к усилению тока Cl-. Алостерическая модуляция этих изменений обусловлена связыванием лигандов с б-субъединицей рецептора [74, 249].

Наличие на синаптических мембранах нервных клеток высокоаффинных мест связывания для бензодиазепинов свидетельствовало о существовании эндогенного лиганда этих рецепторов. Costa с сотрудниками выделили сначала из мозга крысы, а затем и человека белок, способный ингибировать связывание [3Н]-диазепама с синаптическими мембранами [112, 133]. Было определено, что эндогенный лиганд представляет собой полипептид с Mr 9000, который был назван DBI - ингибитор связывания диазепама (англ. diazepam binding inhibitor). В структуре DBI преобладают основные аминокислоты, N-конец пептида защищен; С-конец определяет биологическую активность при взаимодействии пептида с рецептором [77]. DBI является предшественником ряда биологически активных пептидов, главные из которых DBI 33-50, или октадеканейропептид (ODN), DBI 17-50, или триаконтатетранейропептид (TTN) и DBI 26-50, или эйкозапентанейропептид (EPN). Все эти пептиды содержат одинаковую последовательность на С-конце: Глн-Ала-Тре-Вал-Гли-Асп-Вал-Асн-Тре-Асп-Арг-Про-Гли-Лей-Лей-Асп-Лей-Лиз [112]. DBI и его фрагменты объединяют термином эндозепины. Они являются негативными аллостерическими модуляторами ГАМКА-рецептора, снижающими эффективность взаимодействия ГАМК с рецептором [8, 112], и относятся к анксиогенным соединениям, усиливающим состояние тревоги, страха и «проконфликтные» ответы в тесте Фогеля [8, 152].

Эндозепины найдены в тканях человека, крысы, свиньи, быка, лягушки Rana ridibunda, форели [209, 264, 320]. Имунногисто-химическое картирование мозга крысы показало наибольшие концентрации DBI (10 - 50 мМ) в коре больших полушарий, гиппокампе, мозжечке, гипоталамусе, миндалине [72, 113]. У человека самые высокие концентрации были найдены в мозжечке, миндалине, гиппокампе, гипоталамусе и черном веществе, а также в спинном мозге и спинномозговой жидкости [133]. На клеточном уровне, DBI был обнаружен в нейронах и клетках глии, тогда как ODN и TTN были главным образом найдены в нейронах [61, 113, 320]. Наиболее высокие уровни мРНК DBI были найдены в мозжечке и эпендиме третьего желудочка мозга крысы, промежуточные уровни - в обонятельной луковице, дугообразном ядре, эпифизе и гипофизе [62].

С помощью электронной микроскопии показано присутствие ODN в перикарионе нейронов, эндоплазматическом ретикулуме, аппарате Гольджи, микротрубочках, свободных рибосомах [61]. В окончании нейронов DBI и ODN накапливаются в синаптических везикулах [61, 132]. При деполяризации синаптических окончаний под действием К+ одновременно с DBI высвобождаются ГАМК и энкефалины, что указывает на их сосуществование в одном пресинаптическом окончании. К+-стимулируемый выброс DBI зависит от присутствия Са2+ [132].

Есть данные, согласно которым эндозепины влияют на рост клеток глии через аутокринные механизмы [149]. Низкие концентрации ODN (10-10-10-14М) in vitro стимулировали синтез ДНК в глиальных клетках крысы, действуя через центральный тип бензодиазепиновых рецепторов.

DBI и его производные широко распространены в тканях, содержащих периферические бензодиазепиновые рецепторы и участвующие в липидном обмене [55, 88, 108, 128]. Наибольшая концентрация эндозепинов обнаружена в клетках надпочечников, печени, семенников, почек [63, 72, 113]. Количество ODN в этих тканях составляет 400-800 пмоль/г сырой массы [8]. Кроме того, эндозепины обнаружены в клетках Шванна [63]. Присутствие мРНК DBI в периферических органах крысы [62, 91] и человека [252] позволяет заключить, что эндозепины синтезируются и в периферических тканях. Здесь DBI выполняет иные функции, чем в нейронах: он не высвобождается из срезов периферических органов при деполяризации [132]. Через рецепторы, расположенные на мембране митохондрий, эндозепины могут осуществлять регуляцию внутриклеточного метаболизма [96, 124]. В частности, DBI транспортирует холестерол к внутренней мембране митохондрий [113]. Взаимодействие DBI с периферические бензодиазепиновыми рецепторами усиливает вход холестерола в митохондрии с последующим усилением синтеза предшественника стероидов прегненолона. Этот процесс наблюдается как в клетках коры надпочечников [96, 113, 131], так и в глиальных клетках мозга [113, 124]. В надпочечниках это АКТГ-зависимый процесс. Идентичность DBI и белка, связывающего ацил-коэнзим А, выделенного из ткани печени [100, 113], указывает на способность DBI опосредовать синтез жирных кислот. Таким образом, DBI играет существенную роль в синтезе стероидных гормонов в различных тканях за счет регуляции лимитирующей стадии [202].

Уровень DBI в надпочечниках зависит от уровня АКТГ в организме. Удаление гипофиза у крыс вызвало уменьшение концентрации DBI и ПБР в надпочечниках, введение АКТГ уменьшило этот эффект, то есть существует положительная корреляция между уровнем DBI и ПБР в надпочечниках и уровнем кортикостерона в плазме крови [96, 131]. Возможно, что de novo синтез DBI в надпочечниках является важным фактором, опосредующим АКТГ-зависимый стероидогенез.

Локализация бензодиазепиновых рецепторов позволяет предположить, что они вовлечены в регулирование стресс-систем: 1) гипоталамо-гипофизаро-надпочечниковой оси, 2) симпатической нервной системы, 3) ренин-ангиотензиновой системы и 4) нейроэндокринно-иммунной оси. Плотность ПБР наиболее высока в периферических органах, которые активизируются при стрессе (сердце, почки, надпочечники и легкие). Увеличение количества ПБР в мозгу и периферических тканях при остром стрессе может обеспечить нервную и метаболическую подготовку организма для его преодоления [270]. Кроме того, при плавательном и операционном стрессе происходит увеличение плотности и ЦБР в коре больших полушарий [248, 270]. Различные виды стресса вызвали увеличение уровня DBI в надпочечниках и гиппокампе крыс [24, 45, 131], а также уровень мРНК DBI в мозге мыши [192]. Введение диазепама восстанавливает уровень DBI [45]. Поскольку лиганды ПБР могут регулировать транспорт холестерина в митохондрии, то, возможно, увеличение синтеза и секреции глюкокортикоидов при стрессе опосредуется именно ПБР.

ГАМК-ергическая система влияет на уровень регуляторных пептидов и их предшественников. Так, ГАМК проявляет тонизирующее ингибирующее влияние на ПОМК нейроны гипоталамуса, а также на меланотропные клетки промежуточной доли гипофиза [83, 151]. Введение ингибиторов ГАМК-трансаминазы в течение четырех дней привело к увеличению уровня ГАМК в передней и промежуточной долях гипофиза, что, в свою очередь, вызвало уменьшение уровня мРНК ПОМК на 40-60 % в промежуточном, но не в переднем гипофизе. Уже через сутки после первой инъекции уровень ПОМК был уменьшен на 40%, а концентрация б-меланоцитстимулирующего гормона увеличена на 34% по отношению к контролю, возможно, из-за ингибирования секреции гормона. После 4 и 8 дней обработки уровень б-меланоцитстимулирующего гормона, также как и уровень мРНК ПОМК уменьшился. В опытах in vitro ГАМК в концентрации 10 мкмоль/л уменьшила уровни мРНК ПОМК на 40 % после 3 дней обработки. Эти результаты показывают, что ГАМК проявляет прямой ингибирующий эффект на экспрессию гена ПОМК в промежуточной доле гипофиза [213].

Внутривенная и интрацеребровентрикулярная инъекции ODN произвели дозозависимое ингибирование экспрессии гена ПОМК в промежуточном гипофизе крыс. Подобные результаты были получены и в нейронах гипоталамуса [108, 153]. Интрацеребровентрикулярная инъекция ODN в дозах 1 и 0,1 мкг/кг вызвала увеличение уровня мРНК ПОМК в гипоталамусе на 33,5 и 27,4%, соответственно [108]. Givalois и др. в подобных условиях получили уменьшение уровня мРНК ПОМК на 17 и 7% в передней и промежуточной долях гипофиза крыс соответственно [156]. Приведенные данные показывают, что активация ГАМКА-рецептора эндогенным бензодиазепиновым лигандом может ингибировать экспрессию гена ПОМК в гипофизе и гипоталамусе [151, 156]. Удаление надпочечников привело к изменению эффекта, вызванного ODN: произошло увеличение уровня мРНК ПОМК в промежуточном и переднем гипофизе на 60 и 10% соответственно, по сравнению с контролем. Удаление семенников вызвало уменьшение содержания мРНК ПОМК в передней доле и увеличение в промежуточной доле гипофиза, но не изменило отрицательного влияния ODN, наблюдаемого в контрольных животных. Таким образом, in vivo уменьшение уровня мРНК ПОМК в гипофизе, вызванное эндогенными бензодиазепинами, модулируется гормонами надпочечников и половых желез [156].

Введение диазепама (2 мг/кг) значительно увеличило уровни в-эндорфина в гипоталамусе, гиппокампе и коре головного мозга [193, 194].

Острая внутрибрюшинная инъекция диазепама (2 мг/кг) ингибирует деятельность гипоталамо-гипофизарно-надпочечниковой оси самок крыс, то есть уменьшает концентрацию АКТГ и кортикостерона [263]. Такое же действие оказывает диазепам и на уровень АКТГ в плазме человека [290]. Holloway и другие показали, что диазепам in vitro ингибирует синтез кортизола и альдостерона в клетках надпочечников быка [170]. Кроме того, введение диазепама стрессированным животным приводило к уменьшению уровня кортикостерона, АКТГ и норадреналина [51, 111, 316, 330].

Обратный агонист бензодиазепиновых рецепторов, ODN, в дозах 0,1, 1 и 4 мкг/кг, уменьшил содержание мРНК кортикотропин-рилизинг гормона в гипоталамусе на 33, 18 и 26%, соответственно [106]. Удаление надпочечников изменило действие ODN и вызвало увеличение уровня мРНК кортикотропин-рилизинг гормона на 21%. Возможно, это связано с прекращением ингибирующего эффекта глюкокортикоидов. Кастрация не изменила ингибирующего действия ODN. Эти результаты показывают, что эндогенный ODN, через активацию бензодиазепиновых участков ГАМКА-рецептора, отрицательно модулирует деятельность нейронов, синтезирующих КРФ, и что на этот процесс могут влиять центральные и периферические стероиды [155].

Эндозепины влияют на репродуктивную систему на различных ее уровнях. Так, интрацеребровентрикулярное введение ODN в дозе 3 мкг/кг вызвало 40%-ое уменьшение уровня мРНК ГнРф [119, 207]. Кроме того, DBI (0,3-10 нмоль, интрацеребровентрикулярно) уменьшил уровни половых гормонов в сыворотке крови самцов и самок мышей. Этот эффект наблюдался уже через 1 час и продолжался в течение четырех часов после инъекции. Эти результаты предполагают, что DBI действует как эндогенный модулятор, регулирующий уровни половых гормонов in vivo [123].

В опытах in vitro инкубация клеток гипофиза с ГАМК (10-100 мкM) вызвала дозозависимое уменьшение уровня мРНК пролактина. Ингибиторы ГАМКА-рецептора предотвращали данное действие. Такие же результаты были получены и в опытах in vivo при введении ингибиторов трансаминазы. Данные результаты свидетельствуют об ингибирующем влиянии ГАМК на секрецию пролактина и экспрессию его гена в гипофизе [213].

Обратный агонист ГАМКА-рецептора произвел противоположный эффект на экспрессию гена пролактина. Так, интрацеребровентрикулярная инъекция ODN за 4 часа до декапитации вызвала увеличение уровня мРНК пролактина в гипофизе самцов крыс. Удаление надпочечников привело к увеличению уровня мРНК пролактина и усилению эффекта ODN. Авторы предполагают, что эндогенный лиганд ГАМКА-рецептора может стимулировать экспрессию гена пролактина и что в надпочечниках синтезируется фактор(ы), способный уменьшить уровень мРНК пролактина [327].

Агонист ГАМКА-рецептора, диазепам, введенный внутрибрюшинно в дозе 5 мг/кг, увеличил концентрацию лютеинизирующего и не повлиял на уровень фолликулостимулирующего гормонов в сыворотке крови самцов крыс [224].

Диазепам влияет на уровень энкефалинов - компонентов стресс-лимитирующих систем [95, 117, 237]. Так, однократная инъекция диазепама вызвала изменение концентрации энкефалинов в мозге крыс: увеличила в гипоталамусе на 35% и понизила в стриатуме примерно на 25%, в продолговатом и среднем мозге изменения не выявлены. Максимальный эффект от введения препарата был достигнут уже через 2-5 минут после инъекции. Изменения, наблюдаемые в гипоталамусе, были краткосрочными, тогда как уменьшение концентрации энкефалинов в стриатуме имело более длительную продолжительность [117]. Увеличение уровня мет-энкефалина в гипоталамусе свиньи Гвинеи наблюдалось и при хроническом увеличении концентрации ГАМК (обработка аминооксиуксусной кислотной) [237].

1, 2, 4, 8-дневная активация ГАМК-ергической системы привела к уменьшению уровня мет-энкефалина в стриатуме самцов крыс. В гипоталамусе, гиппокампе, лобной коре и мосте подобных изменений не обнаружено. Увеличение концентрации ГАМК в течение 8 дней вызвало рост уровня мРНК препроэнкефалина, тогда как 1-, 2- или 4-дневные обработки не повлияли на него [272, 298]. Хроническое повышение уровня ГАМК в стриатуме при введении ингибиторов ГАМК-трансаминазы (аминооксиуксусная кислота, этаноламин-О-сульфат, г-винил-ГАМК) привело также к уменьшению уровня динорфина (1-8) и увеличению уровня его мРНК [272].

Таким образом, ГАМК влияет на уровень энкефалина и динорфина в стриатуме через ингибирование экспрессии их мРНК [238, 272].

По данным ряда исследователей вещество Р вовлекается в модуляцию стресса и беспокойства [126, 285]. Воздействие разнообразных стрессоров повышает уровень вещества Р в различных областях мозга: миндалине, перегородке, гипоталамусе [95, 105, 126]. Введение антагонистов нейрокининовых рецепторов предотвращает данный эффект и оказывает транквилизирующий эффект [126, 285]. Кроме того, у пациентов с депрессивными расстройствами уровень вещества Р повышен в цереброспинальной жидкости [78] и плазме крови [126]. Ведение диазепама в дозе 5 мг/кг приводит к уменьшению уровня вещества P через 140 минут после инъекции в гиппокампе и сером веществе спинного мозга на 40 % (p <0,001) и 28 % (p <0,05) соответственно по сравнению с контролем [95].

Авторы [126, 285] предполагают, что ингибирование вещество Р-ергической системы может быть использовано для разработки новых антидепрессантов и транквилизаторов.

Нейропептид Y играет в мозге роль транквилизатора [24, 93, 94]. ODN, анксиогенное вещество, вызвал существенное уменьшение уровня мРНК нейропептида Y в гипоталамусе на 17,4-31,4%. Степень воздействия зависела от дозы вещества [108].

Введение диазепама в течение 28 дней привело к повышению уровня мРНК интерлейкина-1-бета (пептид, активирующий Т-лимфоциты) в гипоталамусе, гиппокампе, фронтальной коре и стволе мозга крысы [312].

Таким образом, диазепам и агонисты бензодиазепиновых рецепторов изменяют уровень ПОМК и его дериватов (эндорфинов, АКТГ), энкефалинов, пептидов половой системы (ГнРф, лютеинизирующего гормона, пролактина) и других регуляторных пептидов, участвующих в развитии психических расстройств, через модуляцию ГАМК-ергической системы. Механизм данного явления до конца не выяснен.

1.1.2. Нейропептиды при действии галоперидола

Галоперидол (4-(пара-хлорфенил)-1-[3- (пара-фторбензоил)-пропил]- пиперидинол-4) широко применяют в клинической практике в качестве антипсихотического средства при лечении шизофрении, различных психозов, а также для купирования психомоторного возбуждения различного генеза [38, 69, 262]. Кроме того, для галоперидола характерна противорвотная активность, связанная с избирательным угнетением хеморецепторных триггерных зон продолговатого мозга [38, 256], а также анестезирующее действие [99].

Клинические действия нейролептика обусловлены способностью избирательно блокировать дофаминовые рецепторы ЦНС [328]. В настоящее время охарактеризовано пять типов ДА-рецепторов. Галоперидол связывается преимущественно с Д2-рецепторами. ДА-рецепторы могут располагаться на пресинаптических мембранах дофаминовых нейронов (авторецепторы), а также на постсинаптических мембранах различных нейронов, включая пептидергические нейроны. Постсинаптические ДА-рецепторы могут быть представлены всеми подтипами, в качестве же авторецепторов могут выступать только Д2- и Д3-рецепторы. Активация авторецептора ингибирует дофаминовую трансмиссию путем уменьшения секреции и синтеза дофамина в нейронах. Низкие концентрации агонистов ДА-рецепторов приводят к активации авторецепторов, тогда как более высокие концентрации активируют постсинаптические ДА-рецепторы, что приводит к увеличению дофаминовой передачи [79].

В пределах ЦНС ДА-рецепторы найдены в среднем, промежуточном мозге, обонятельной луковице и сетчатке. 80-90% всех ДА-рецепторов обнаружено в стриатуме. Кроме того, тела нейронов дофаминергической системы находятся в лимбических образованиях, коре головного мозга, некоторых ядрах гипоталамуса, мозговых оболочках и в периферических тканях [3, 49, 79, 101]. В зависимости от локализации ДА-рецепторов дофамин оказывает различное действие. При связывании с постсинаптическими ДА-рецепторами полосатого тела дофамин стимулирует двигательную активность, поведенческие эффекты; связывание дофамина с постсинаптическими ДА-рецепторами гипофиза приводит к ингибированию секреции гипофизарных гормонов; с ДА-рецепторами надпочечников - к регуляции секреции альдостерона [70, 79, 103, 284]. Нейролептики блокируют эти эффекты [1, 2, 49, 98, 273, 287].

В патогенез шизофрении, шизотипических и бредовых расстройств кроме ДА-рецепторов вовлекаются и пептидные рецепторы [4]. В развитие психических болезней вовлекаются КРФ, вазопрессин, нейротензин, вещество Р, холецистокинин [120, 173, 174].

В организме деятельность пептидергических нейронов находится под контролем дофаминовой системы, поэтому изменение ее функционирования при введении галоперидола приводит к изменению уровня регуляторных пептидов в мозге.

Однократное введение нейролептика увеличило уровень мРНК препроэнкефалина в стриатуме и аккумбентном ядре [66]. Так, однократная внутрибрюшинная инъекция галоперидола увеличила содержание мРНК проэнкефалина и пронейротензина в хвостатом и аккумбентном ядрах у крыс [261]. Подхроническая доза галоперидола (3 мг/кг, вводимая внутрибрюшинно ежедневно в течение 5 дней) вызвала рост уровня мРНК препроэнкефалина в стриатуме в 1,8 раз (р<0,001) по сравнению с контрольными животными. Уровень опиоидных пептидов повысился в 1,6 раз (р<0,001) [57].

Таким образом, дофамин проявляет ингибирующее действие на экспрессию мРНК препроэнкефалина в стриатуме и аккумбентном ядре крысы, которое осуществляется через Д2-рецепторы [97, 154, 239]. При введении антагониста этих рецепторов, галоперидола, данный эффект подавляется [167, 228, 314].

Активация или ингибирование дофаминовых рецепторов влияет на содержание мет-энкефалина в гипофизе крыс.

Так, введение бромокриптина (агониста дофамина) в течение 3 дней вызвало уменьшение уровня мет-энкефалина в промежуточной доле гипофиза, а после 4-недельной обработки уровень мет-энкефалина снизился на 60-70%. Эти эффекты сохранялись в течение 4 дней после прекращения введения бромокриптина. В гипоталамусе и передней доли гипофиза существенные изменения выявлены не были [153, 154]. Соответственно при введении галоперидола уровень мет-энкефалина в промежуточной доле гипофиза был выше, чем в контроле [153]. Но существуют также данные о снижении содержания мет- и лей-энкефалина при повторной инъекции галоперидола [43] и уменьшении уровня мРНК препроэнкефалина на 42 % при хроническом потреблении нейролептика (3 недели) в передней доле гипофиза у самцов крыс.

Галоперидол влияет на секрецию энкефалина. В опытах in vitro агонисты Д2-рецептора увеличивали секрецию энкефалина при деполяризации клеток стриатума, не влияя на секрецию недеполяризованных клеток. Этот эффект был предотвращен галоперидолом. Возможно, возбуждение Д2-рецептора in vitro или in vivo облегчает секрецию энкефалина в стриатуме, но эндогенный дофамин не влияет на деятельность нейронов при обычных условиях [183, 211].

Вещество P участвует в развитии психоневрологических расстройств через взаимодействие с дофаминовой системой [169].

Однократное или многократное внутрибрюшинное введение нейролептика в дозе 1 мг/кг снижало в нигростриатальной области мозга содержание вещества Р и К, а также б- и в-препротахикининовых мРНК. Кроме того, наблюдался параллелизм между сроками снижения содержания исследованных мРНК и сроками максимального клинического действия галоперидола как антипсихотического вещества. Полагают, что галоперидол снижает биосинтез препротахикининовой мРНК, а взаимодействие между тахикининовыми и дофаминовыми нейронами играет роль в модуляции функций базальных ганглиев [67, 73, 187].

Хроническое воздействие галоперидола привело к увеличению уровня мРНК препротахикинина А в гиппокампальной CA3 подобласти и в коре больших полушарий [334], а также к уменьшению уровня мРНК препротахикинина А в аккумбентном ядре (14 %) [210, 226], в дорсолатеральной (19%) и медиальной (15%) частях хвостатого ядра [210, 226, 294]. Содержание мРНК препросоматостатина не изменились в исследованных областях мозга [65, 226]. В гипофизе и септе нейролептик увеличил экспрессию мРНК препротахикинина [89, 294]. Потребление галоперидол в течение 45 дней привело к уменьшению содержания фактора роста нервов в гиппокампе [254].

Холецистокинин проявляет эффекты, сходные с действием нейролептиков [323, 336]. У пациентов с диагнозом шизофрения, получающих нейролептики, уровень мРНК холецистокинина в мозге повышен по сравнению со здоровыми людьми [286]. Такой же эффект наблюдался в гиппокампе и коре больших полушарий при введении галоперидола [324].

Главные участки экспрессии гена ПОМК - промежуточная и передняя доли гипофиза и дугообразное ядро гипоталамуса [260]. Роль дофамина была исследована путем введения галоперидола и бромокриптина. В дугообразном ядре бромокриптин увеличил, а галоперидол уменьшил уровень мРНК ПОМК. Наоборот, в промежуточной доле гипофиза бромокриптин заметно понизил, а галоперидол повысил уровень мРНК на 100-150% [69, 172, 253]. Эффект бромокриптина на клетки гипофиза подтвердился и опытами in vitro [76]. Повышение уровня мРНК ПОМК в промежуточной доле гипофиза в результате действия галоперидола наблюдалось уже через 6 часов после обработки [103]. Полное аннулирование эффектов галоперидола было замечено спустя 2 недели после отмены препарата [172]. Эти данные указывают на то, что экспрессия гена ПОМК регулируется дофамином и что этот процесс отличается в мозгу и гипофизе [258, 319]. Хронический галоперидол (2 мг/кг в течение 14 дней) увеличил уровень мРНК ПОМК, пролактина, гормона роста и Д2-рецептора в гипофизе [187]. Даже кратковременная обработка галоперидолом (5 и 2 дня, 2 мг/кг в день) вела к существенным увеличениям уровня мРНК Д2-рецепторов и ПОМК в промежуточной доле гипофиза. В передней доле гипофиза подобных изменений не было обнаружено [70, 103].

Meador-Woodruff и соавт. обнаружили увеличение уровня мРНК ПОМК, а также в-эндорфина, б- и г-меланоцитстимулирующего гормона в промежуточной доле гипофиза после хронического введения галоперидола и понижение уровня мРНК ПОМК, в-эндорфина, АКТГ и г-меланоцитстимулирующего гормона в передней доле [229]. Авторы [229] предполагают, что биосинтез, процессинг и секреция ПОМК в гипофизе контролируется дофаминергической системой, но механизм влияния дофамина на переднюю и промежуточную долю гипофиза различен.

В опытах in vitro на клетках гипофиза дофамин (1 мM) уменьшил уровень мРНК ПОМК в промежуточной доле на 77%, но не повлиял на экспрессию гена ПОМК в передней доле. Бромокриптин (100 нМ) оказывал действие подобное дофамину. Эффектам дофамина и бромокриптина противодействовал галоперидол (10 мM). Уровни в-эндорфина и б-меланоцитстимулирующего гормона изменялись параллельно изменению синтеза ПОМК [212].

Галоперидол, вводимый в течение 7 - 21 дней (1,5 мг/кг, ежедневно), увеличил уровень в-эндорфина на 80 - 100% в промежуточной доле гипофиза крыс [69, 171, 172] и секрецию в-эндорфина in vitro [172], а также стимулировал меланотропную деятельность [284]. Бромокриптин соответственно уменьшал уровень б-меланоцитостимулирующего гормона в промежуточной доле гипофиза [284].

Хроническое воздействие антагониста Д2-рецептора (1 мг/кг) увеличило уровень в-эндорфина в промежуточной доле гипофиза, особенно N-ацетил-в-эндорфина-(1-31) и N-ацетил-в-эндорфина-(1-27), не затронув уровень N-ацетил-в-эндорфина-(1-26) [236], а также в среднем и продолговатом мозге всех N-ацетильных производных эндорфина. Уровень NH2-пептидов не изменился ни в одном из отделов [165, 236]. Обработка галоперидолом вызвала существенное увеличение концентрации в-, г-, б-эндорфина и б-меланоцитстимулирующего гормона в промежуточной доле и в-эндорфина в передней доле гипофиза [103, 314]. В передней доле гипофиза значительно увеличилось соотношение в-эндорфин/б-эндорфин. В промежуточной доле подобных эффектов не наблюдалось [314]. Эти результаты указывают, что дофаминергическая система влияет не только на секрецию, но и на посттрансляционную модификацию гипофизарного в-эндорфина [165, 237]. Кроме того, нейролептик выборочно увеличил содержание в-, г- и б-эндорфина в гипоталамусе [314], гиппокампе [314] и перегородке [164, 171].

Повышение уровня в-эндорфина в плазме наблюдалось при однократной инъекции галоперидола. Причем степень изменения зависела от дозы препарата [129, 164, 171, 229]. Увеличение концентрации в-эндорфина, а также б-меланотропина в плазме происходило и при хроническом введении нейролептика [171, 314].

Таким образом, синтез и секреция в-эндорфина в промежуточной доле гипофиза и de novo синтез ПОМК находится под ингибирующим влиянием дофамина [103, 172].

Нейротензин, возможно, играет важную роль в этиологии и/или медикаментозном лечении шизофрении и других психоневрологических заболеваний. Установлено, что уровень нейротензина в цереброспинальной жидкости больных шизофренией уменьшен, но восстанавливается после лечения галоперидолом [58, 92, 269, 290]. При этом, чем выше был уровень психопатологии, тем ниже уровень данного пептида [89, 292].

Сходные эффекты, наблюдаемые при периферическом введении антипсихотических лекарств и центральном введении нейротензина, привели к возникновению гипотезы о том, что нейротензин является эндогенным антипсихотическим средством [243]. Локализация нейротензина и его рецепторов в мезолимбической ДА-системе подтверждает гипотезу о вовлечении нейротензина в этиологию шизофрении. Кроме того, предполагается участие данного пептида в экстрапирамидальных расстройствах (паркинсонизм, дискинезии, гиперкинезы), развивающихся при лечении антипсихотическими препаратами [73, 269].

Существует множество данных о влиянии галоперидола на нейротензиновую систему [59, 73, 243]. Так, острая инъекция галоперидола (1 мг/кг) увеличила экспрессию гена нейротензин/нейромедина N в дорсолатеральном стриатуме и аккумбентном ядре у крыс [117, 231, 233]. Причем время после инъекции влияло на уровень мРНК. Экспрессия мРНК нейротензин/нейромедина N в дорсолатеральной части хвостатого ядра, не обнаруженная в контроле, увеличилась через 0,5 и 7 часов после инъекции и уменьшалась через 20-24 часа. В дорсомедиальной и вентролатеральной части хвостатого ядра, едва обнаруживаемая базальная экспрессия мРНК нейротензин/нейромедина N, наблюдаемая в контроле, заметно увеличилась через 24 часа после введения галоперидола [231, 335]. Вызванному нейролептиком повышению уровня зрелой мРНК в стриатуме предшествовало увеличение уровня гяРНК. Эти данные указывают, что острое воздействие активирует транскрипцию гена нейротензин/нейромедина N, хотя сопутствующий эффект на стабильность первичных транскриптов не исключается [231]. Даже единственная достаточно низкая доза нейролептика (0,5 мг/кг) через час приводила к увеличению уровня мРНК нейротензин/нейромедина N почти в 3 раза в дорсолатеральном стриатуме мышей и крыс [233]. Хроническое потребление галоперидола увеличило концентрацию нейротензина в аккумбентном, хвостатом ядрах и в черной субстанции [244]. Кроме того, галоперидол (1 мг/кг), вводимый крысам в течение 2 недель увеличил уровень мРНК рецептора нейротензина на 10% (p<0,05) в черном веществе [85]. Эти эффекты являются следствием блокады галоперидолом дофаминовых Д2-рецепторов [59].

Очевидному повышению транскрипции гена нейротензин/нейромедина N после единственной инъекции галоперидола предшествовало увеличение уровня c-fos мРНК в той же самой области [117, 162, 232, 235]. При этом в клетках дорсолатерального стриатума мРНК c-fos и нейротензин/нейромедина N солокализованы [232]. Введение пептида, блокирующего экспрессию c-fos гена, привело к 50%-ному понижению уровня мРНК нейротензин/нейромедина N в дорсолатеральном стриатуме после введения нейролептика. С другой стороны, экспрессия мРНК препроэнкефалина в дорсолатеральном стриатуме и нейро-тензин/нейромедина N в аккумбентном ядре не изменилась. Таким образом, c-fos играет определенную роль в регулировании транскрипции гена нейротензин/нейромедина N в дорсолатеральном стриатуме крыс после острого воздействия галоперидола [230]. Существуют данные о том, что промотор гена нейротензина содержит два предполагаемых участка для закрепления Fos-белков, которые могут увеличить транскрипцию гена [52].

Уменьшение концентрации нейропептида Y в стриатуме наблюдалось после хронического введения галоперидола и аминазина [250]. После хронического воздействия нейролептиков в дорсальном стриатуме произошло увеличение как числа клеток, экспрессирующих мРНК нейрокинина В (45 %), так и концентрации пептида в отдельных клетках (37 %) [227]. Введение галоперидола в течение 28 дней привело к повышению уровня мРНК интерлейкина-1-бета (пептид, активирующий Т-лимфоциты) в гипоталамусе, гиппокампе, фронтальной коре и стволе мозга крысы [312].

Агонист дофаминовых рецепторов, бромокриптин, влияет на ростовые процессы в клетке. Так, введение бромокриптина в течение 8 дней вызвало уменьшение диаметра ядра и понижение синтеза ДНК в клетках гипофиза [188].

Дофаминергическая система влияет на репродуктивную систему. Хроническое введение бромокриптина увеличило уровень мРНК ГТ-Рг в мозге крыс на 70%, галоперидол снизил этот параметр на 20% [208].

Таким образом, галоперидол через ингибирование дофаминергической системы изменяет функционирование репродуктивной системы, влияет на концентрацию опиоидных пептидов и их предшественников, а также на экспрессию их мРНК в головном мозге.

1.2. Основные карбоксипептидазы и их роль в процессинге регуляторных пептидов

Большинство биологически активных пептидов синтезируется в виде высокомолекулярных неактивных предшественников - препробелков, которые подвергаются посттрансляционной модификации [43, 309]. Синтез предшественников осуществляется на мембраносвязанных рибосомах ЭПР. Наличие на N-конце препроформы нейропептида набора гидрофобных аминокислот, так называемой сигнальной последовательности, позволяет предшественнику транспортироваться внутрь ЭПР. Здесь сигнальная последовательность отщепляется сигнальной пептидазой и образуется пропептид. Дальнейший процессинг осуществляется в ходе передвижения молекул по ЭПР, комплексу Гольджи и в секреторных везикулах [309].

Сначала под действием эндопептидаз, расщепляющих нейропептиды по синглетным и дуплетным остаткам основных аминокислот (фурин, РС1/3, РС2, РС4 [291], проопиомеланокортин-превращающий фермент [215], тиоловая прогормонконвертаза [71], динорфин-превращающий фермент [115] и др.), образуются неактивные пептиды, содержащие на N- и С-концах “лишние” остатки основных аминокислот. Удаление этих аминокислот в секреторных везикулах осуществляется соответственно аминопептидазо-В-подобным(и) [19] и карбоксипептидазо-В-подобным(и) ферментами [12, 21, 137].

Таким образом, для понимания механизмов действия нейропептидов существенным моментом является изучение их образования и деградации. Основным карбоксипептидазам как ферментам, участвующим в конечных стадиях образования и начальных стадиях деградации, принадлежит важная роль в регуляции уровня нейропептидов в организме. В связи с этим, большой интерес представляет изучение активности основных карбоксипептидаз в норме и при различных физиологических и патологических состояниях организма, сопровождающихся изменением содержания биологически активных пептидов.

1.2.1. Протеолитические ферменты обмена регуляторных пептидов при действии психолептиков

Биологические свойства регуляторных пептидов, изменение их уровня под влиянием различных воздействий в определенной степени обусловлены особенностями функционирования ферментативных систем обмена биологически активных пептидов. Изменение интенсивности процессов синтеза и деградации при изменении функционирования медиаторных систем [65, 83, 95, 193, 225, 238] свидетельствует о регуляторной функции протеолиза, которая состоит в запуске и прерывании ряда биохимических и физиологических процессов. Биологически активные пептиды, в свою очередь, могут определять физиологические эффекты лекарственных препаратов, вовлекаться в развитие зависимости от них. Поэтому очень важным представляется исследование активности ферментов обмена нейропептидов при ...........



Страницы: [1] | 2 | 3 | 4 | 5 | 6 | 7 |









 
Показывать только:
Портфель:
Выбранных работ  



Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Активность основных карбоксипептидаз при действии нейролептиков | диссертация

СтудентБанк.ру © 2017 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег